WaveSmart ${ }^{\circledR}$

Spliters

Application

These products are needed when an optical splitter or combiner is required in a central office environment. They are used in CATV headends and telephone company central offices.

Description

Clearfield ${ }^{\circledR}$ provides Planar Lightwave Circuit (PLC) and Fused Biconic Taper (FBT) Splitters in a variety of optical component packages for the network and application need allowing carriers the ability to provide uniform fully passive signal splitting to multiple premises.

Planar Lightwave Circuit (PLC or Planar)

A light circuit on an 'optical chip' is mounted on a carrier and fibers, usually in ribbon form, are bonded to the edges of the chip. The assembly is encapsulated in a protective enclosure. PLC devices support direct split counts up to 64. In planar fabrication technology, devices are made using ion-exchange or photo-lithography techniques that replicate solid-state circuit methods. Ultimately, the per-unit cost for the expected high volumes will become advantageous for planar technology, especially for higher port devices. A difficult manufacturing problem involves a low-loss method for attaching the optical fibers to the chip and then passing the market's qualification and reliability requirements.

Fused Biconic Taper (FBT)

Two or more fibers are twisted together, heated and drawn to bring the optical cores into near contact. The combined fibers are mounted on a low-expansion carrier and encapsulated in a low expansion tube. FBT devices allow direct splitting up to 32 ways. Higher split counts are achieved by splicing multiple devices to form multi-stage, concatenated splitters. Concatenated
 splitters are also called tree splitters. The fused biconic tapered technology directly bonds or melts the fibers together so that the final splitter can be mounted in small diameter (approximately 3-millimeter) stainless-steel tubes. This technology produces small, low-cost, highperformance devices. A tough fabrication obstacle involves the small and delicate final coupling region. However, when properly mounted and packaged, these devices meet long-term stability and reliability requirements.

Packaging Options

- Clearview ${ }^{\circledR}$ Cassette
- 1 RU Splitter/Pizza Box
- Clearview xPAK
- Discrete (unpackaged solution)
- LGX

Features and Benefits

Integrity

- Terminations are designed and tested to Telcordia GR-326
- Supports industry standard SC and LC singlemode and multimode connectors
- 100% performance tested for insertion loss, return loss and final mechanical inspect

Protection

- Ruggedized, secure packaging
- Non-removable adapter plates

Access

- Front and rear access to panel

Investment

- FieldSmart ${ }^{\circledR}$ Optical Components offer an economical, dense and user-friendly solution for deploying splitters or WDMs in a central office design
- Virtually any combination of split ratios and number of components can be achieved in one of the four Clearview Cassette sizes
- Clearfield supports legacy splitter deployments by offering optical components in LGX footprint
- 1 RU optical components available for smaller, limited deployments
- Environmentally stable, high isolation, low insertion loss
- Compliant to Telcordia GR-1221 and GR-1209

WaveSmart ${ }^{\circledR}$

Splitters

Technical Specifications

Planar Lightwave Circuit Splitters

Type	Insertion Loss	Return Loss	PDL	Uniformity	Directivity	Operating/ Storage Temperature	Wavelength Range
1×64	$<20.6 \mathrm{~dB}$	$>50 \mathrm{~dB}$	$<0.3 \mathrm{~dB}$	$<1.8 \mathrm{~dB}$	$>55 \mathrm{~dB}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	1260 to 1650 nm
1×32	$<16.8 \mathrm{~dB}$	$>50 \mathrm{~dB}$	$<0.3 \mathrm{~dB}$	$<1.7 \mathrm{~dB}$	$>55 \mathrm{~dB}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	1260 to 1650 nm
1×16	$<13.8 \mathrm{~dB}$	$>50 \mathrm{~dB}$	$<0.3 \mathrm{~dB}$	$<1.2 \mathrm{~dB}$	$>55 \mathrm{~dB}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	1260 to 1650 nm
1×8	$<10.8 \mathrm{~dB}$	$>50 \mathrm{~dB}$	$<0.3 \mathrm{~dB}$	$<0.8 \mathrm{~dB}$	$>55 \mathrm{~dB}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	1260 to 1650 nm
1×4	$<7.5 \mathrm{~dB}$	$>50 \mathrm{~dB}$	$<0.3 \mathrm{~dB}$	$<0.6 \mathrm{~dB}$	$>55 \mathrm{~dB}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	1260 to 1650 nm

Fused Biconic Taper Splitters

Dual Window - Wavelength Flattened (Terminated Specs)	1×2	1×4	1×8	1×16	1×32
Maximum Insertion Loss	3.6 dB	7.2 dB	10.7 dB	14 dB	17.6 dB
Maximum Uniformity	0.8 dB	1 dB	1.3 dB	1.6 dB	1.9 dB
Maximum PDL	0.2 dB	0.3 dB	0.4 dB	0.5 dB	0.6 dB

Packaging Dimensions

Optical Component Type	Dimensions
One High Clearview Blue Cassette	$0.8^{\prime \prime} \mathrm{H} \times 8.6^{\prime \prime} \mathrm{W} \times 7.06^{\prime \prime} \mathrm{D}(20.32 \mathrm{~mm} \times 218.44 \mathrm{~mm} \times 179.32 \mathrm{~mm})$
Two High Clearview Blue Cassette	$1.6^{\prime \prime} \mathrm{H} \times 8.6^{\prime \prime} \mathrm{W} \times 7.06^{\prime \prime} \mathrm{D}(40.64 \mathrm{~mm} \times 218.44 \mathrm{~mm} \times 179.32 \mathrm{~mm})$
Three High Clearview Blue Cassette	$2.41^{\prime \prime} \mathrm{H} \times 8.6^{\prime \prime} \mathrm{W} \times 7.06$ " D $(61.21 \mathrm{~mm} \times 218.44 \mathrm{~mm} \times 179.32 \mathrm{~mm})$
Six High Clearview Blue Cassette	$4.84^{\prime \prime} \mathrm{H} \times 8.6^{\prime \prime} \mathrm{W} \times 7.06^{\prime \prime} \mathrm{D}(122.94 \mathrm{~mm} \times 218.44 \mathrm{~mm} \times 179.32 \mathrm{~mm})$
LGX One Wide Box	$1.15^{\prime \prime} \mathrm{H} \times 5.12^{\prime \prime} \mathrm{W} \times 6.25^{\prime \prime} \mathrm{D}(29.21 \mathrm{~mm} \times 130.05 \mathrm{~mm} \times 158.75 \mathrm{~mm})$
LGX Two Wide Box	$2.27^{\prime \prime} \mathrm{H} \times 5.12^{\prime \prime} \mathrm{W} \times 6.25^{\prime \prime} \mathrm{D}(57.66 \mathrm{~mm} \times 130.05 \mathrm{~mm} \times 158.75 \mathrm{~mm})$
LGX Four Wide Box	$4.55^{\prime \prime} \mathrm{H} \times 5.12^{\prime \prime} \mathrm{W} \times 6.25 " \mathrm{D}(115.57 \mathrm{~mm} \times 130.05 \mathrm{~mm} \times 158.75 \mathrm{~mm})$
One Rack Unit (19")	$1.75^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 15.02^{\prime \prime} \mathrm{D}(44.45 \mathrm{~mm} \times 482.60 \mathrm{~mm} \times 381.50 \mathrm{~mm})$
One Rack Unit (23")	$1.75^{\prime \prime} \mathrm{H} \times 23^{\prime \prime} \mathrm{W} \times 15.02^{\prime \prime} \mathrm{D}(44.45 \mathrm{~mm} \times 584.20 \mathrm{~mm} \times 381.51 \mathrm{~mm})$

Configured Part Numbers

